3.1.95 \(\int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx\) [95]

3.1.95.1 Optimal result
3.1.95.2 Mathematica [A] (verified)
3.1.95.3 Rubi [A] (verified)
3.1.95.4 Maple [B] (verified)
3.1.95.5 Fricas [A] (verification not implemented)
3.1.95.6 Sympy [F(-1)]
3.1.95.7 Maxima [B] (verification not implemented)
3.1.95.8 Giac [A] (verification not implemented)
3.1.95.9 Mupad [F(-1)]

3.1.95.1 Optimal result

Integrand size = 33, antiderivative size = 144 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {a^{5/2} (5 A+2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{d}+\frac {a^3 (3 A+14 B) \sin (c+d x)}{3 d \sqrt {a+a \cos (c+d x)}}-\frac {a^2 (3 A-2 B) \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac {a A (a+a \cos (c+d x))^{3/2} \tan (c+d x)}{d} \]

output
a^(5/2)*(5*A+2*B)*arctanh(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d+1/3 
*a^3*(3*A+14*B)*sin(d*x+c)/d/(a+a*cos(d*x+c))^(1/2)-1/3*a^2*(3*A-2*B)*sin( 
d*x+c)*(a+a*cos(d*x+c))^(1/2)/d+a*A*(a+a*cos(d*x+c))^(3/2)*tan(d*x+c)/d
 
3.1.95.2 Mathematica [A] (verified)

Time = 0.35 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.83 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {a^2 \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \sec (c+d x) \left (3 \sqrt {2} (5 A+2 B) \text {arctanh}\left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right ) \cos (c+d x)+2 (3 A+B+2 (3 A+8 B) \cos (c+d x)+B \cos (2 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{6 d} \]

input
Integrate[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x 
]
 
output
(a^2*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*Sec[c + d*x]*(3*Sqrt[2]*( 
5*A + 2*B)*ArcTanh[Sqrt[2]*Sin[(c + d*x)/2]]*Cos[c + d*x] + 2*(3*A + B + 2 
*(3*A + 8*B)*Cos[c + d*x] + B*Cos[2*(c + d*x)])*Sin[(c + d*x)/2]))/(6*d)
 
3.1.95.3 Rubi [A] (verified)

Time = 0.92 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.06, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 3454, 27, 3042, 3455, 27, 3042, 3460, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^2(c+d x) (a \cos (c+d x)+a)^{5/2} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^2}dx\)

\(\Big \downarrow \) 3454

\(\displaystyle \int \frac {1}{2} (\cos (c+d x) a+a)^{3/2} (a (5 A+2 B)-a (3 A-2 B) \cos (c+d x)) \sec (c+d x)dx+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \int (\cos (c+d x) a+a)^{3/2} (a (5 A+2 B)-a (3 A-2 B) \cos (c+d x)) \sec (c+d x)dx+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \int \frac {\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (5 A+2 B)-a (3 A-2 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {1}{2} \left (\frac {2}{3} \int \frac {1}{2} \sqrt {\cos (c+d x) a+a} \left (3 (5 A+2 B) a^2+(3 A+14 B) \cos (c+d x) a^2\right ) \sec (c+d x)dx-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \int \sqrt {\cos (c+d x) a+a} \left (3 (5 A+2 B) a^2+(3 A+14 B) \cos (c+d x) a^2\right ) \sec (c+d x)dx-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (3 (5 A+2 B) a^2+(3 A+14 B) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \left (3 a^2 (5 A+2 B) \int \sqrt {\cos (c+d x) a+a} \sec (c+d x)dx+\frac {2 a^3 (3 A+14 B) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \left (3 a^2 (5 A+2 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sin \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 a^3 (3 A+14 B) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \left (\frac {2 a^3 (3 A+14 B) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}-\frac {6 a^3 (5 A+2 B) \int \frac {1}{a-\frac {a^2 \sin ^2(c+d x)}{\cos (c+d x) a+a}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {1}{3} \left (\frac {6 a^{5/2} (5 A+2 B) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {2 a^3 (3 A+14 B) \sin (c+d x)}{d \sqrt {a \cos (c+d x)+a}}\right )-\frac {2 a^2 (3 A-2 B) \sin (c+d x) \sqrt {a \cos (c+d x)+a}}{3 d}\right )+\frac {a A \tan (c+d x) (a \cos (c+d x)+a)^{3/2}}{d}\)

input
Int[(a + a*Cos[c + d*x])^(5/2)*(A + B*Cos[c + d*x])*Sec[c + d*x]^2,x]
 
output
((-2*a^2*(3*A - 2*B)*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d) + ((6*a^ 
(5/2)*(5*A + 2*B)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]] 
)/d + (2*a^3*(3*A + 14*B)*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/3)/2 
 + (a*A*(a + a*Cos[c + d*x])^(3/2)*Tan[c + d*x])/d
 

3.1.95.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3454
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[ 
e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + 
 a*d))   Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp 
[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n + 1) - B 
*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f 
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] 
&& GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0 
])
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
3.1.95.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(682\) vs. \(2(128)=256\).

Time = 15.19 (sec) , antiderivative size = 683, normalized size of antiderivative = 4.74

method result size
parts \(\frac {A \,a^{\frac {3}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-10 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -10 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a +6 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+5 \ln \left (-\frac {4 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +5 \ln \left (\frac {4 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+4 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+8 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a \right )}{\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\right ) \left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}+\frac {B \,a^{\frac {3}{2}} \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 \sqrt {2}\, \ln \left (\frac {2 \sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+2 \sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}+4 a}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {2}}\right ) a +3 \sqrt {2}\, \ln \left (-\frac {2 \left (\sqrt {2}\, a \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {a}-2 a \right )}{2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {2}}\right ) a +36 \sqrt {a}\, \sqrt {a \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\right ) \sqrt {2}}{6 \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {a \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(683\)
default \(\text {Expression too large to display}\) \(764\)

input
int((a+cos(d*x+c)*a)^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x,method=_RETURNV 
ERBOSE)
 
output
A*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*2^(1/2)*(a 
*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2-10*ln(-4/(2*cos( 
1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d 
*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*sin(1/2*d*x+1/2*c)^2*a-10*ln(4/(2*cos(1/2 
*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^(1/2)*(a*sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*a^(1/2)+2*a))*sin(1/2*d*x+1/2*c)^2*a+6*2^(1/2)*(a*sin(1/2* 
d*x+1/2*c)^2)^(1/2)*a^(1/2)+5*ln(-4/(2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2 
)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a) 
)*a+5*ln(4/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)+2^ 
(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a)/(2*cos(1/2*d*x+1/2*c 
)-2^(1/2))/(2*cos(1/2*d*x+1/2*c)+2^(1/2))/sin(1/2*d*x+1/2*c)/(a*cos(1/2*d* 
x+1/2*c)^2)^(1/2)/d+1/6*B*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c) 
^2)^(1/2)*(-8*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)*sin(1/2*d*x+1/2*c)^2+ 
3*2^(1/2)*ln(2/(2*cos(1/2*d*x+1/2*c)+2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c 
)+2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)+2*a))*a+3*2^(1/2)*ln(-2/( 
2*cos(1/2*d*x+1/2*c)-2^(1/2))*(2^(1/2)*a*cos(1/2*d*x+1/2*c)-2^(1/2)*(a*sin 
(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/2)-2*a))*a+36*a^(1/2)*(a*sin(1/2*d*x+1/2*c)^ 
2)^(1/2))/sin(1/2*d*x+1/2*c)*2^(1/2)/(a*cos(1/2*d*x+1/2*c)^2)^(1/2)/d
 
3.1.95.5 Fricas [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.40 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\frac {3 \, {\left ({\left (5 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (5 \, A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \, {\left (2 \, B a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A + 8 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, A a^{2}\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{12 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="fricas")
 
output
1/12*(3*((5*A + 2*B)*a^2*cos(d*x + c)^2 + (5*A + 2*B)*a^2*cos(d*x + c))*sq 
rt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + 
 a)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d 
*x + c)^2)) + 4*(2*B*a^2*cos(d*x + c)^2 + 2*(3*A + 8*B)*a^2*cos(d*x + c) + 
 3*A*a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c)^2 + d*cos 
(d*x + c))
 
3.1.95.6 Sympy [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))**(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)**2,x)
 
output
Timed out
 
3.1.95.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 8114 vs. \(2 (128) = 256\).

Time = 0.65 (sec) , antiderivative size = 8114, normalized size of antiderivative = 56.35 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="maxima")
 
output
-1/252*(1449*sqrt(2)*a^2*cos(5/2*d*x + 5/2*c)^3*sin(2*d*x + 2*c) - 1260*sq 
rt(2)*a^2*sin(1/2*d*x + 1/2*c)^3 - 1449*(sqrt(2)*a^2*cos(2*d*x + 2*c) + sq 
rt(2)*a^2)*sin(5/2*d*x + 5/2*c)^3 + 21*(25*sqrt(2)*a^2*cos(2*d*x + 2*c)^2* 
sin(3/2*d*x + 3/2*c) + 25*sqrt(2)*a^2*sin(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2 
*c) - 60*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + 5*(5*sqrt(2)*a^2*sin(3/2*d*x + 
 3/2*c) - 12*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + (25*sqrt 
(2)*a^2*cos(3/2*d*x + 3/2*c) + 198*sqrt(2)*a^2*cos(1/2*d*x + 1/2*c))*sin(2 
*d*x + 2*c))*cos(5/2*d*x + 5/2*c)^2 - 21*(12*sqrt(2)*a^2*sin(1/2*d*x + 1/2 
*c) - 25*(sqrt(2)*a^2*cos(1/2*d*x + 1/2*c)^2 + sqrt(2)*a^2*sin(1/2*d*x + 1 
/2*c)^2)*sin(3/2*d*x + 3/2*c))*cos(2*d*x + 2*c)^2 + 21*(25*sqrt(2)*a^2*cos 
(2*d*x + 2*c)^2*sin(3/2*d*x + 3/2*c) + 25*sqrt(2)*a^2*sin(2*d*x + 2*c)^2*s 
in(3/2*d*x + 3/2*c) + 69*sqrt(2)*a^2*cos(5/2*d*x + 5/2*c)*sin(2*d*x + 2*c) 
 - 198*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c) + (25*sqrt(2)*a^2*sin(3/2*d*x + 3/ 
2*c) - 198*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 2*c) + 5*(5*sqrt( 
2)*a^2*cos(3/2*d*x + 3/2*c) + 12*sqrt(2)*a^2*cos(1/2*d*x + 1/2*c))*sin(2*d 
*x + 2*c))*sin(5/2*d*x + 5/2*c)^2 - 21*(12*sqrt(2)*a^2*sin(1/2*d*x + 1/2*c 
) - 25*(sqrt(2)*a^2*cos(1/2*d*x + 1/2*c)^2 + sqrt(2)*a^2*sin(1/2*d*x + 1/2 
*c)^2)*sin(3/2*d*x + 3/2*c))*sin(2*d*x + 2*c)^2 - 35*(sqrt(2)*a^2*cos(5/2* 
d*x + 5/2*c)^2*sin(2*d*x + 2*c) + 2*sqrt(2)*a^2*cos(5/2*d*x + 5/2*c)*cos(1 
/2*d*x + 1/2*c)*sin(2*d*x + 2*c) + sqrt(2)*a^2*sin(5/2*d*x + 5/2*c)^2*s...
 
3.1.95.8 Giac [A] (verification not implemented)

Time = 0.66 (sec) , antiderivative size = 209, normalized size of antiderivative = 1.45 \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=-\frac {\sqrt {2} {\left (16 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 24 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 72 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \frac {12 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1} + 3 \, \sqrt {2} {\left (5 \, A a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right ) + 2 \, B a^{2} \mathrm {sgn}\left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )\right )} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )\right )} \sqrt {a}}{12 \, d} \]

input
integrate((a+a*cos(d*x+c))^(5/2)*(A+B*cos(d*x+c))*sec(d*x+c)^2,x, algorith 
m="giac")
 
output
-1/12*sqrt(2)*(16*B*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c)^3 - 
 24*A*a^2*sgn(cos(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) - 72*B*a^2*sgn(co 
s(1/2*d*x + 1/2*c))*sin(1/2*d*x + 1/2*c) + 12*A*a^2*sgn(cos(1/2*d*x + 1/2* 
c))*sin(1/2*d*x + 1/2*c)/(2*sin(1/2*d*x + 1/2*c)^2 - 1) + 3*sqrt(2)*(5*A*a 
^2*sgn(cos(1/2*d*x + 1/2*c)) + 2*B*a^2*sgn(cos(1/2*d*x + 1/2*c)))*log(abs( 
-2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c))/abs(2*sqrt(2) + 4*sin(1/2*d*x + 1/2*c 
))))*sqrt(a)/d
 
3.1.95.9 Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^{5/2} (A+B \cos (c+d x)) \sec ^2(c+d x) \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}}{{\cos \left (c+d\,x\right )}^2} \,d x \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^2,x)
 
output
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(5/2))/cos(c + d*x)^2, x)